Renal cortical pyruvate depletion during AKI.

نویسندگان

  • Richard A Zager
  • Ali C M Johnson
  • Kirsten Becker
چکیده

Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15-60 minutes; 0-18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal cortical pyruvate as a potentially critical mediator of acute kidney injury.

Pyruvate is a key intermediary in both aerobic and anaerobic energy metabolisms. In addition, a burgeoning body of experimental literature indicates that it can also dramatically impact oxidant, proinflammatory, and cytoprotective pathways. In sum, these actions can confer protection against diverse forms of tissue damage. However, the fate of pyruvate during the evolution of acute kidney injur...

متن کامل

Renal Cortical Pyruvate as a Potentially Critical Mediator of Acute Kidney Injury

Pyruvate is a key intermediary in both aerobic and anaerobic energy metabolisms. In addition, a burgeoning body of experimental literature indicates that it can also dramatically impact oxidant, proinflammatory, and cytoprotective pathways. In sum, these actions can confer protection against diverse forms of tissue damage. However, the fate of pyruvate during the evolution of acute kidney injur...

متن کامل

Energy and oxygen metabolism disorder during septic acute kidney injury.

BACKGROUND/AIMS Acute kidney injury (AKI) during septic shock, which is one of the most common clinical syndromes in the intensive care unit (ICU), has a high mortality rate and poor prognosis, partly because of a poor understanding of the pathogenesis of renal dysfunction during septic shock. Although ischemic injury of the kidney has been reported to result from adenosine triphosphate (ATP) d...

متن کامل

Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury.

While disruption of energy production is an important contributor to renal injury, metabolic alterations in sepsis-induced AKI remain understudied. We assessed changes in renal cortical glycolytic metabolism in a mouse model of sepsis-induced AKI. A specific and rapid increase in hexokinase (HK) activity (∼2-fold) was observed 3 h after LPS exposure and maintained up to 18 h, in association wit...

متن کامل

Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury.

Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2014